基于神经网络的蔬菜病害静态预警模型

【www.zhangdahai.com--其他范文】


打开文本图片集

摘要:为了更好地对设施蔬菜病害进行预警,分别使用LVQ神经网络、BP神经网络两种算法构建设施蔬菜病害静态预警模型。为了测试两种模型的可行性和适用性,以黄瓜黑星病为例,使用两种神经网络模型进行比较分析。结果发现,两种模型均能够较好、较精确地实现对黄瓜黑星病的预测。其中,BP神经网络模型时间开销更小,在实际运用中更有效。

关键词: 设施蔬菜病害; 预警; LVQ神经网络; BP神经网络; 黑星病

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2016)10-0189-03

Abstract: In order to make better in early warning of facilities vegetable diseases, two kinds of algorithms of LVQ neural network and BP neural network are used to construct static early-warning models of facilities vegetable diseases. In order to test the feasibility and applicability of two models, this paper takes cucumber scab for example and makes comparation of the two models. The result shows that two kinds of models are both able to better and accurately realize the forecasting of cucumber scab. It turns out that BP neural network model, which costs less time, is more effective in practice.

Key words: facilities vegetable diseases; early warning; LVQ neural network; BP neural network; cucumber scab

预警是一个军事术语,指用来对付突然袭击的防范措施,是组织的一种信息反馈机制,后来逐步引申到现代政治、经济、技术、医疗、灾变、生态、治安等自然和社会领域[1]。当下,预警在重大气象灾害方面起到重要作用。而创新地把预警应用于设施蔬菜病害方面,利用数据挖掘方法,探寻设施环境条件与病害的关联关系,把以诊治为主的设施蔬菜病害防控模式转变为以预防为主,降低了病害防控成本,减少了农药污染,大幅度地提高蔬菜产量和质量,在农业科技和食品安全方面发挥重要作用[2]。文中以棚室黄瓜为例,构建黄瓜病害静态预警模型。通过实时地对温度,湿度,土壤酸碱度等自然条件的测量,对病虫害的发生进行预测,再根据预测结果调整当前环境,从而达到黄瓜病害预警的目的。运用LVQ神经网络、BP神经网络两种算法建立黄瓜黑星病静态预警模型并比较两种模型的优劣。结果表明,在以黄瓜黑星病为例的蔬菜病害静态预警实验中,运用BP神经网络算法所构建的模型优于LVQ神经网络,在实际的蔬菜病害静态预警的应用中更有参考价值。

1 模型的构建及分析

以黄瓜黑星病为例,分别使用LVQ神经网络、BP神经网络两种算法构建黄瓜黑星病静态预警模型,并从时间、空间复杂度和模型预测的确诊率三个方面对两种模型的适用性和可行性进行比较分析。

1.1 样本指标的选取与数据收集

构建基于LVQ神经网络和BP神经网络算法的黄瓜黑星病静态预警模型,其基础的工作是进行黄瓜黑星病样本指标的选取和对所选取的样本指标进行数据收集。这两项工作为模型的构建提供数据支持。

1.1.1 样本指标的选取

黄瓜是一种常见的蔬菜,甘甜爽口,清淡香脆,是城镇居民常备的家常菜之一。黄瓜在生长过程中容易发生各种病害而导致减产,如霜霉病、白粉病、黑星病等等。因此,在黄瓜的生长过程中,可通过对当前温度,光照,土壤ph值等环境条件的测量,预测黄瓜得病的可能性而调整当前环境。文中以黄瓜黑星病为例测试模型的性能。此病的病因为瓜疮痂枝孢菌,病菌以菌丝体附着在病株残体上,在田间、土壤、棚架中越冬,成为翌年侵染源,也可以分生孢子附在种子表面或以菌丝体潜伏在种皮内越冬,成为近距离传播的主要来源。病菌在棚室内的潜育期一般3~10天。整个生育期均可侵染发病,幼瓜和成瓜均可发病。幼瓜受害,病斑处组织生长受抑制,引起瓜条弯曲、畸形。该病菌在低温高湿等一系列复合条件下容易发生和流行。一般在2月中下旬就开始发病,到5月份以后气温高时病害依然发生[3-4]。文中选用容易感染此种病害的品种津研四号进行试验[5-6]。经查阅资料可知:黄瓜黑星病发病的因素有土壤ph值,空气相对湿度,温度,光照,黄瓜栽培品种等等。其中土壤ph值,空气相对湿度,温度这三个因素在黄瓜发病过程中起主要作用。致使黄瓜黑星病发病的各因素范围如下:ph值:2.5-7 ; 空气相对湿度:>=90;温度:15℃-25℃。

1.1.2 数据收集

黄瓜黑星病的发病是一个过程,是多个发病因素相互交叉、共同作用的产物。根据黄瓜病害书籍资料,搜集所需的数据。共330组数据,290组数据作为训练集,40组数据作为测试集。290组训练集作为样本数,每个样本数中有三个输入特征数据,即土壤ph,空气相对湿度,温度等三类,所有样本数共分为2个类别,即正常与异常。分别用LVQ神经网络、BP神经网络两种算法测试模型的可行性并对其进行比较分析,为预测模型的选择提供参考。

1.2 LVQ神经网络预警模型

构建基于LVQ神经网络的黄瓜黑星病静态预警模型,测试模型的可行性,并对模型进行优化,进而比较优化前、后的黄瓜黑星病预警模型,分析模型的适用性。

1.2.1 LVQ神经网络思想

LVQ神经网络[7-8](Learning Vector Quantization)是在有“导师”状态下对竞争层进行训练的一种学习算法,属于前向有监督神经网络类型,在模式识别和优化领域有着广泛的应用。LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。隐含层和输出层神经元之间的连接权值固定为1。在网络训练过程中,这些权值被修改。隐含层神经元和输出神经元都具有二进制输出值。当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其他隐含层神经元都被迫产生“0”。与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其他输出神经元均发出“0” 。网络结构如图1:

1.2.2 网络创建及测试

在Matlab R2012b的平台上进行预测。建立一个3层的向量量化神经网络函数,隐含层神经元首次尝试设置为15个,学习速率设置为默认值0.01,权值学习函数也设置为默认函数:net=newlvq(minmax(P_train),15,[rate_B rate_M],0.01,‘learnlv1’)。

利用LVQ神经网络算法开始模型训练,训练结束后将会生成相应的神经网络,再通过相关验证数据的输入将计算出的预测值与期望输出进行比较分析,得出相关的结论。40组数据作为测试集进行10次预测,测试结果如表1:

经计算,当隐含层神经元为15个时,正常、异常黄瓜的平均确诊率分别为91.508%、91.05%,平均确诊率高达90%,此设定准确率较高。经过多次运行,运行时间数量级皆为1级。表明LVQ神经网络用于模式识别是有效的,在黄瓜黑星病的预警中具有很大的参考价值和指导意义。

1.2.3 隐含层神经元个数优化

在LVQ神经网络算法基础上,为了得到可靠稳定的模型,提高正确率,可使用带有交叉验证功能的LVQ神经网络程序进行预测。此功能可确定最佳的隐含层神经元个数。常见的交叉验证形式之一为K-fold cross-validation。K次交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其他结合方式,最终得到一个单一估测。这个方法的优势在于,同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次。在此采用常用的5折交叉验证法进行训练。

每一次网络的训练都会产生不同的最佳隐含层神经元个数,这是由于每次训练集和测试集是由计算机随机产生,且每次训练过程都不相同造成的。经过多次实验,发现隐含层神经元个数在11~20范围内较为适宜。运行一次带有交叉验证功能的LVQ算法程序需要的时间数量级是3级。运行时间较长,但在确诊率上没有明显的改善。因此,带有交叉验证功能的LVQ神经网络模型在确定无交叉验证功能的LVQ神经网络模型隐含层神经元个数范围方面起重要的借鉴作用,但由于其所需预测时间较长,不适用于实际预测的应用。

1.3 BP神经网络预警模型

构建基于BP神经网络的黄瓜黑星病静态预警模型,调整网络参数进行仿真训练,并分析模型的适用性。

1.3.1 BP神经网络思想

BP神经网络[8-10] (Back Propagation)是一种采用误差反向传播算法的多层前向神经网络,其主要特点是信息正向传播,误差反向传播。在传递过程中,输入信号经过输入层、隐含层的逐层处理,直至输出层,若在输出层得不到期望值,则反向传播,根据预测误差调整权值和阈值,使BP神经网络的输出不断逼近预测输出值。网络结构如图2:

1.3.2 网络创建及测试

同样在matlab R2012b的平台上进行预测。在该三层网络中,第一层传递函数默认为‘tansig’, 第二层传递函数设置为‘purelin’,训练函数设置为‘trainlm",隐含层神经元个数设置为10个,输出层神经元为1个。创建该网络,进行训练,仿真并测试返回结果。相关程序为:

net=newff(minmax(P_train),[10 1],{‘tansig’,‘purelin’},‘trainlm’)

net.trainParam.epochs=1000;

net.trainParam.show=10;

net.trainParam.lr=0.1;

net.trainParam.goal=0.1;

net=train(net,P_train,Tc_train);

T_sim=sim(net,P_test);

for i=1:length(T_sim)

if T_sim(i)<= 1.5

T_sim(i)=1;

else

T_sim(i)=2;

end

end

对于多层前馈网络来说,隐层节点数的确定是成败的关键。若数量太少,则网络所能获取的用以解决问题的信息太少;若数量太多,不仅增加训练时间,更重要的是隐层节点过多还可能出现所谓“过渡吻合”问题,即测试误差增大导致泛化能力下降,因此合理选择隐层节点数非常重要。关于隐层数及其节点数的选择比较复杂,一般原则是:在能正确反映输入输出关系的基础上,应选用较少的隐层节点数,以使网络结构尽量简单。隐含层神经元个数选择是一个较为复杂的问题,往往需要设计者多次试验来决定,因而不存在一个理想的解析式来表示。确定隐含层神经元个数方法可参考公式[n2=log2n1]和[n2=2×n1+1](是输入层神经元数,是隐含层神经元数)[11]。对黄瓜黑星病预测实验而言,=3,则网络训练需要从隐含层神经元个数为=1训练到个数为=7。理论上最佳隐含层神经元个数在1~7个左右,但仍需要多次测试来确定。适当增加隐含层神经元个数可以减少训练误差。经验证,当隐含层神经元个数设为7时,进行10次预测,模型测试确诊率较高。如此既保证正确率,又能较节省时间。预测结果如表2:

如表2,经计算,在10次预测中,正常黄瓜平均确诊率为91.511%,异常黄瓜平均确诊率为94.542%。运行时间数量级为0级,速度更快。经多次运行、测试总结可得,BP神经网络模型在准确率上不次于LVQ神经网络模型,在时间上也远快于LVQ神经网络模型。由此看出,BP神经网络算法在黄瓜黑星病的预测过程中,效果更好,参考价值更高。

1.4 两种模型比较分析

算法,是预测黄瓜黑星病的核心。在评价哪种算法更适用于黑星病的预警时,应兼顾时间、空复杂度和确诊率。这两种模型空间复杂度基本相同。相比空间需求,实际操作中,我们更关注程序运行的时间和确诊率。两种神经网络算法在训练预测过程中各有利弊,但预测结果的准确性都高达90%左右。因此,时间开销便成了两种模型适用性的最重要因素。分别运行两种模型20次,得到程序运行的时间开销折线图如图3。由图3可知,运用BP神经网络可快速得到预测结果,在实际运用过程中实时性更突出。

2 总结

本文研究发现两种模型均可用于黄瓜黑星病的预警,模型预测的准确率相差无几高达90%左右。这进一步表明了数据的准确性、指标建立的合理性和模型建立的可行性。也证明把预警应用于设施蔬菜病害方面,利用数据挖掘方法,探寻设施环境条件与病害的关联关系这一构想的合理性和可操作性。

若结合结果的准确率和时间开销,BP神经网络模型在实际的黄瓜黑星病及其他病害的预测过程中比LVQ神经网络模型更胜一筹,具有更高的时效性。

参考文献:

[1] 霍松涛.旅游目的地旅游预警系统研究[D].开封:河南大学,2006.

[2] 邵峰晶,于忠清.数据挖掘原理与算法[M].北京:电子工业出版社,2003.

[3] 王生荣,杨升炯.黄瓜黑星病菌生物学特性及流行规律研究[J].甘肃科学学报,1999,11(3):83-86.

[4] 易齐,王蔚,王传英,等.黄瓜黑星病及其蔓延为害现状[J].植物保护,1987,13(6):40-41.

[5] 许勇,朱其杰.黄瓜黑星病抗病性离体子叶接种鉴定方法[J].北京农业大学学报,1994(1):31-34.

[6] 朱建兰,陈秀蓉.黄瓜品种对黑星病的抗性鉴定结果[J].甘肃农业科技,1998(7):32-33.

[7] 段明秀,何迎生.基于LVQ神经网络的手写字母识别[J].吉首大学学报,2010,31(2):41-43.

[8] 史忠植.神经网络[M].北京: 高等教育出版社,2009.

[9] 王文剑.BP神经网络模型的优化[J].计算机工程与设计,2000,21(6):8-10.

[10] 袁曾任.人工神经元网络及其应用[M].北京: 清华大学出版社,1999.

[11] 沈花玉,王兆霞,高成耀,等.BP神经网络隐含层单元数的确定[J].天津理工大学学报,2008,24(5):13-15.

推荐访问:神经网络 病害 预警 静态 蔬菜

本文来源:http://www.zhangdahai.com/shiyongfanwen/qitafanwen/2023/0401/577976.html

  • 相关内容
  • 热门专题
  • 网站地图- 手机版
  • Copyright @ www.zhangdahai.com 大海范文网 All Rights Reserved 黔ICP备2021006551号
  • 免责声明:大海范文网部分信息来自互联网,并不带表本站观点!若侵害了您的利益,请联系我们,我们将在48小时内删除!