冰层弯曲强度和弹性模量与等效冰温的试验关系

【www.zhangdahai.com--其他范文】

zoޛ)j首材料力学理论,在假设冰层为均质各向同性材料;梁的根部刚性连接;没有水浮力支承条件下,计算冰层弯曲强度与弹性模量。同时试验时冰层温度垂直剖面。首先用冰层中间处温度,建立弯曲强度和弹性模量与冰温之间的初始关系;然后将冰温垂直剖面分布式带入弹性模量与冰温的初始关系式中,得到弹性模量垂直剖面,据此确定冰层弯曲破坏时中性轴的近似位置。在利用中性轴近似位置处冰温,再次建立弹性模量与冰温之间的关系,利用迭代思想确定更加精确的中性轴位置。迭代四次之后,得到中性轴精确位置。将中性轴精确位置处的冰温作为冰层的等效温度,并依次建立弯曲强度和弹性模量同等效冰温的试验关系。分析结果表明,温度从-1831 ℃到-7726 ℃,弯曲强度在43612 kPa到75031 kPa之间,弹性模量在362 GPa到671 GPa之间。它们的总体走势是随着冰温的降低,弯曲强度和弹性模量呈现增加趋势。

关键词:冰层;原位悬臂梁;中性轴;温度;弯曲强度;弹性模量

中图分类号:TV311文献标志码:A文章编号:16721683(2016)06007506

Experimental relationship between flexural strength,elastic modulus of ice sheet and equivalent ice temperature

WANG Jiankang,CAO Xiaowei,WANG Qingkai,YAN Lihui,LI Zhijun

(State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China)

Abstract:Experiments on Flexural Strength and Elastic Modulus of natural freshwater of Ulansuhai Lake in Inner Mongolia were conducted by in situ cantilever beam method.Applying the mechanics of materials method,under the conditions of assuming that the ice is homogeneous and isotropic,the rear of beam is rigidly connected,and there is no water buoyancy supported,the flexural strength and elastic modulus of ice sheet and ice sheet temperature vertical profile were calculated.First,the initial relationship between bending strength,elastic modulus and ice temperature in the middle of ice cantilever was established.Then the formula of the ice temperature vertical profile was brought into the initial relationship between the elastic modulus and the ice temperature,and then the elastic modulus vertical profile distribution was available.According to this,the approximate position of the neutral axis was determined when the ice had flexural failure.Using ice temperature at the approximate position of the neutral axis,the relationship between the elastic modulus and the ice temperature was established again.The more accurate position of the neutral axis could be determined by the iteration method.After four iterations,the position of the neutral axis was accurate.The ice temperature at the precise location of the neutral axis was used as the equivalent temperature of the ice layer.The experimental relationship between bending strength,elastic modulus and equivalent ice temperature was established.Analysis results showed that the temperature ranged from 1.831 ℃ to 7.726 ℃,the flexural strength ranged from 436.12 kPa to 750.31 kPa and the elastic modulus ranged from 3.62 GPa to 6.71 GPa.The overall trends of flexural strength and elastic modulus were basically increasing with decreasing temperature.

Key words:ice sheet;situ cantilever beam;neutral axis;temperature;flexural strength;elastic modulus

[JP2]在冰区水工结构及桥梁、采油平台及破冰船设计、建造和服役过程中,冰荷载是不得不要考虑到的环境外力。计算冰荷载,要已知冰层的各项力学参数。冰层弯曲强度和弹性模量是倾斜结构物冰力计算的重要参数[1]。国际上对于冰弯曲[24]、压缩[5]的力学性质进行过研究。国内张明元、隋吉学等对于冰的弯曲强度[68]、李志军等对冰的压缩强度[9]与剪切强度[10]进行过研究。对于淡水冰弯曲强度的研究,所应用的方法基本为实验室三点弯曲法[1112]。而原位悬臂梁方法,尽管冰层接近自然,但其试样大,劳动力强度大,在上世纪末国内有所应用[13]。悬臂梁试验通常假设冰是均质各向同性材料,根部刚性连接且没有水浮力的弹性梁;然后根据弹性理论计算弯曲强度与弹性模量,因此计算结果与实际有所偏差。原因是天然冰层温度垂直剖面大多数不是常数,其对应冰层弯曲强度与弹性模量垂直剖面也不是恒值,因此冰层弯曲时的中性轴位置不在冰层中间。

基于此种情况,本文研究选择黄河宁蒙段附近乌梁素海,在2016年1月18日至26日,选择了温差较大的5天,进行9根现场原位悬臂梁力学试验,并用铂电阻温度链实时记录气-冰温-水-泥温度剖面。利用力学试验和温度实测数据、弹性梁弯曲理论和迭代计算思想,确定出每次试验时冰层弯曲时中性轴位置。最终将中性轴位置处的温度作为冰层等效温度,建立冰层弯曲强度以及弹性模量和冰层等效温度的试验关系。这样虽然仍然具有一定的缺陷性,但可为评估冰层的实际力学指标提供一种新思路。对冰区水工结构,南水北调输水工程中[1416]浮式或固定式破冰结构物,如正倒椎体[17]和破冰船[18]的设计、物理模拟试验[19]等提供数据。

1原位悬臂梁弯曲试验

现场悬臂梁试验是在天然冰盖上切割出梁的三个边,保持第四个边与冰层连接,形成悬臂梁,然后在梁的自由端施加荷载。对河冰来讲,根部应力集中的影响较为明显,Timco[20]的试验结果表明,现场悬臂梁法与三点弯曲法得到的河冰弯曲强度值之比为1∶2,其原因就是悬臂梁根部应力集中造成的。为了尽量减弱悬臂梁根部应力集中的影响,在悬臂梁根部用10 cm的麻花钻在冰面打出两个洞,然后沿着圆的切线方向切割出两条平行的线,使悬臂梁根部连接处为圆弧状。

选择在冰面无明显裂纹的地方切割出悬臂梁的试样,梁宽b与冰厚h之间的比例在1~2之间,梁长l与冰厚h的比例在7~10之间。本次试验时,冰厚在35~38 cm之间,因此梁宽b切割40 cm左右,梁长l在350 cm左右,每两根悬臂梁之间的间距约为10 cm。切割悬臂梁试样的同时,组装好加载装置和测力仪器,如图1所示。考虑到冰的弯曲破坏形式分为上翘和下弯两种方式,因此,试验的加载方式有上拉和下压两种。由于切割悬臂梁时会带来尺寸上的误差,每次试验过后再对梁的具体尺寸进行测量。

根据弹性理论,矩形截面悬臂梁的弯曲强度为

4结论

(1) 根据现场实测数据,悬臂梁试验时冰层温度垂直剖面有两种类型:一种为直线型,一种为抛物线型;他们均可由二次多项式统一表达。

(2)悬臂梁试验时,取中性轴位置处温度作为冰层等效温度比选择冰层中部温度作为等效温度更加合理。冰层温度垂直剖面为直线型分布时中性轴位置比抛物线型分布时更加靠近冰面。

(3) 试验测得淡水冰层的弯曲强度与弹性模量,在受冰温影响的同时,也受到应变速率以及其它的环境因素的影响。温度从-1831 ℃到-7726 ℃之间,淡水冰层弯曲强度和弹性模量随冰温降低呈现出增加趋势。弯曲强度最小值与最大值分别为43612 kPa 和75031 kPa,弹性模量最小值与最大值分别为362 GPa 和671 GPa。

参考文献(References):

[1]刘诗华,侯树强.寒区核电厂取水口防冰设施设计研究[J].人民黄河,2015,37(5):112115.(LIU Shihua,HOU Shuqiang.Research on icepreventing facility schemes of waterintake in a nuclear power plant in Cold Regions[J].Yellow River,2015,37(5):112115.(in Chinese)) DOI:10.3969/j.issn.10001379.2015.05.029

[2]Svec O J,Thompson J C,Frederking R M W.Stress Concentrations in the Root of an Ice Cover Cantilever:Model Tests and Theory[J].Cold Regions Science and Technology,1985,11(1):6373.DOI:10.1016/0165232X(85)900072

[3]Gow A J,Ueda H T,Ricard J A.Flexural Strength of Ice on Temperate Lakes:Comparative Tests of Large Cantilever and Simply Supported Beams[R].CRREL Report,1978.

[4]Gow A J,Ueda H T.Structure and Temperature Dependence of the Flexural Properties of Laboratory Freshwater Ice Sheets[J].Cold Regions Science and Technology,1989,16(3):249270.DOI:10.1016/0165232X(89)900268

[5]Daley C,Tuhkuri J,Riska K.The Role of Discrete Failures in Local Ice Loads[J].Cold Regions Science and Technology,1998,27:197211.DOI:10.1016/S0165232X(98)00007X

[6]张明元,严德成,孟广琳,等.辽东湾三道沟附近海域海冰弯曲强度[J].中国海洋平台,1992,7(1):811.(ZHANG Mingyuan,YAN Decheng,MENG Guanglin,et al.Sea ice bending strength near the Sea Area Sandaogou of Liaodong Bay[J].China Offshore Platform.1992,7(1):811.(in Chinese))

[7]隋吉学,孟广琳,李志军,等.环渤海海冰弯曲强度影响因素分析[J].海洋环境科学,1996,15(1):7376.(SUI Jixue,MENG Guanglin,LI Zhijun,et al.Analysis of the factors affecting bending strength of the Sea Ice in Bohai Sea[J].Marine Environmental Science.1996,15(1):7376.(in Chinese))

[8]Han H W,Jia Q,Huang W F,et al.Flexural strength and effective modulus of large columnargrained freshwater ice[J].Journal of Cold Regions Engineering,2015.(in Chinese)) (DOI:10.1061/(ASCE)CR.19435495.0000098)

[9]李志军,周庆,汪恩良,等.加载方式对冰单轴压缩强度影响的试验研究[J].水利学报,2013,44(9):10371043.(LI Zhijun,ZHOU Qing,WANG Enliang,et al.Experimental Study on the Loading Mode Effects on the Ice Uniaxial Compressive Strength[J].Journal of Hydraulic Engineering,2013,44(9):10371043.(in Chinese)) DOI:10.13243/j.cnki.slxb.2013.09.002[ZK)]

[10][ZK(#]李志军,孟广琳,高树刚,等.辽东湾S2冰侧限剪切强度的试验研究[J].海洋工程,2002,20(1):2023.(LI Zhijun,MENG Guanglin,GAO Shugang,et al.Experimental study of confined shear strength of S2 Ice in Liaodong Gulf[J].The Ocean Engineering,2002,20(1):2023.(in Chinese)) DOI:10.16483/j.issn.10059865.2002.01.004

[11]隋吉学,张明远,李志军,等.黄河冰三点弯曲强度的试验研究[J].海洋环境科学,1994,13(1):8286.(SUI Jixue,ZHANG Mingyuan,LI Zhijun,et al.Experimental study on threepoint bending strength of the Yellow River Ice[J].Marine Environmental Science.1994,13(1):8286.(in Chinese))

[12]张傲妲,冀鸿兰,李志军,等.大庆红旗泡水库淡水冰弯曲强度试验研究[J].中国农村水利水电,2011,3:7073.(ZHANG Aoda,JI Honglan,LI Zhijun,et al.Experimental research on flexural strength of fresh water ice in Hongqipao Reservoir in Daqing[J].China Rural Water and Hydropower,2011,3:7073.(in Chinese))

[13]卢敏,张涛,杨国金.海冰原地悬臂梁试验[J].中国海上油气[JP2](工程),1992,4(1):5761.(LU Min,ZHANG Tao,YANG Guojin.Experiment of sea ice situ cantilever beam[J].China Offshore Oil and Gas(Engineering),1992,4(1):5761.(in Chinese))

[14]徐冬梅,辛悦,王文川,等.南水北调中线京石段冰期输水规律研究[J].南水北调与水利科技,2015,13(1):168172.(XU Dongmei,XI N Yue,WANG Wenchuan,et al.Study on water diversion regulation in BeijingShijiazhuang section of Middle Route of SouthtoNorth Water Diversion Project during ice period[J].SouthtoNorth Water Transfers and Water Science & Technology,2015,13(1):168172.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk.2015.01.038

[15]范北林,张细兵,蔺秋生.南水北调中线工程冰期输水冰情及措施研究[J].[JP2]南水北调与水利科技,2008,6(1):6669.(FAN Beilin,ZHANG Xibing,LIN Qiusheng.Ice Situation of the Middle Route of the SouthtoNorth Water Diversion Project and Ice Danger Prevention Measures[J].SouthtoNorth Water Transfers and Water Science & Technology,2008,6(1):6669.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk.2008.01.021

[16]周庭正,赵新,黄焱.南水北调中线工程渡槽结构冰盖温度膨胀力研究[J].南水北调与水利科技,2012,10(3):711.(ZHOU Tingzheng,ZHAO Xin,HUANG Yan.Ice thermal expansive pressure acting on aqueduct structure of Middle Route Scheme of SNWDP[J].SouthtoNorth Water Transfers and Water Science & Technology,2012,10(3):711.(in Chinese)) DOI:10.3724/SP.J.1201.2012.03007

[17]岳前进,许宁,崔航,马春杰.导管架平台安装椎体降低冰振效果研究[J].海洋工程,2011,29(2):1824.(YUE Qianjin,XU Ning,CUI Hang,MA Chunjie.Effect of adding cone to mitigate iceinduced vibration[J].The Ocean Engineering,2011,29(2):1824.(in Chinese)) DOI:10.16483/j.issn.10059865.2011.02.010

[18]王钰涵,李 辉,任慧龙,单鹏昊.连续破冰模式下破冰船的冰力研究[J].海洋工程,2013,31(4):6873.(WANG Yuhan,LI Hui,REN Huilong,SHEN Penghao.Study of ice force about icebreaker based on continuous breaking pattern[J].The Ocean Engineering,2013,31(4):6873.(in Chinese)) DOI:10.16483/j.issn.10059865.2013.04.008

[19]张术彬,常俊德,张 滨.聚氨酯护坡结构静冰力学试验研究[J].[JP2]南水北调与水利科技,2013,11(3):8286.(ZHANG Shubin,CHANG Junde,ZHANG Bin.Experimental study on ice mechanics of purrevetment structure[J].SouthtoNorth Water Transfers and Water Science & Technology,2013,11(3):8285.(in Chinese)) DOI:10.3724/SP.J.1201.2013.03082

[20]Timco G W,Frederking R M W.Flexural strength and fracture toughness of sea ice[J].Cold Regions Science and Technology,1983,8:3541.DOI:10.1016/0165232X(83)900150

[21]Azarnejad A,Hrudey T M.A numerical study of thermal ice loads on structures[J].Canadian Journal of Civil Engineering,1998,25(3):557568.

[22]张岩,李畅游,裴国霞,等.乌梁素海湖泊冰生长过程的现场观测[J].人民黄河,2014,36(8):1820.(ZHANG Yan,LI Changyou,PEI Guoxia,et al.Field observation of ice growing process in Wuliangsuhai Lake[J].Yellow River,2014,36(8):1820.(in Chinese)) DOI:10.3969/j.issn.10001379.2014.08.006

[23]Timco G W,Frederking R M W.Compressive strength of sea ice sheets[J].Cold Regions Science and Technology,1990,17(3):227240.DOI:10.1016/S0165232X(05)800035

[24]Kerr A D,Palmer W T.The Deformations and stresses in floating ice plates[J].Acta Mechanica,1972,15:5772.DOI:10.1007/BF01177286

推荐访问:弹性模量 冰层 弯曲 强度 试验

本文来源:http://www.zhangdahai.com/shiyongfanwen/qitafanwen/2023/0402/578524.html

  • 相关内容
  • 热门专题
  • 网站地图- 手机版
  • Copyright @ www.zhangdahai.com 大海范文网 All Rights Reserved 黔ICP备2021006551号
  • 免责声明:大海范文网部分信息来自互联网,并不带表本站观点!若侵害了您的利益,请联系我们,我们将在48小时内删除!