电磁波的生物效应对肿瘤化疗增敏效果的探讨研究:肿瘤放疗的副作用

【www.zhangdahai.com--行政管理论文】

  【摘 要】化疗是临床癌症治疗最主要的手段之一。但化疗所存在的药物缺乏特异的敏感选择性和严重的副作用等制约其在临床实践中的推广和应用。本文探讨拟采用生物学与电子工程学的实验技术,在电磁波的生物效应对肿瘤细胞抑制的基础上,研究电磁波的生物效应对化疗的增敏作用,探索提高肿瘤化疗治疗效果的新途径。
  【关键词】 化疗 增敏 电磁波
  
   [Abstract]Chemotherapy is a primary clinical treatment for cancer, but its lack of selective sensitivity and severe side effects limit its widespread use and application. This article explores the use of experimental techniques in biology and electrical engineering. Based on the observation that electromagnetic waves control tumors, we study how these waves help with sensitization during chemotherapy, and how this may lead to a new way to improve chemotherapy treatments for cancer.
   [Key words] Chemotherapy;Sensitization;Electromagnetic waves
  
  引言
  
  随着人类生活环境、生活水平和生活方式的变化以及医学的进步,疾病谱发生了显著的变化,一般性传染病逐渐被控制。而恶性肿瘤则日益成为常见且严重的威胁人类生命和生活质量的主要疾病之一。化疗是临床癌症治疗最主要的成熟的治疗手段之一。但化疗所存在的药物缺乏特异的敏感选择性及同时存在的严重的副作用等制约其在临床实践中的推广和应用。如何提高放疗药物的敏感性是过内外科研、制药和医学界专家十分关注的前沿问题。
  
  一、研究背景
  
  包括人类在内的多细胞机体均存在细胞的不断增殖与死亡。细胞的死亡包括坏死(necrosis)和凋亡 (apoptosis) 两种方式。细胞的凋亡是细胞主动的自杀过程,是由基因所控制的细胞自主有序的死亡,凋亡体可从上皮细胞表面脱落或被周围细胞吞噬清除,不伴随坏死所特有的炎症反应。凋亡对维持机体的正常发育及内环境的稳定起着十分重要的作用。
  在细胞凋亡的诱导中,作为肌醇磷脂代谢途径中细胞信息转导的第二信使,细胞内钙离子(Ca2+)起着十分重要的作用。胞内Ca2+ 浓度的改变是细胞生理活动的重要物质基础,并在细胞信号转导、诱发一系列细胞功能事件中起重要作用。因此,细胞内Ca2+ 浓度平衡处于严格的调节控制之中。研究发现,细胞内Ca2+浓度的高低调控着多种类型细胞的凋亡,具体表现为Ca2+内流和聚积可诱导多种细胞凋亡,被认为是细胞凋亡的共同途径。而用钙通道拮抗剂等方法阻止Ca2+内流则可减轻细胞损伤,抑制细胞凋亡。
  化疗药物对癌症治疗有效的主要机制之一是诱导癌细胞凋亡。参与调控细胞凋亡的因素很多,包括细胞外信号、细胞内第二信使及细胞内各种酶类。Ca2+ 作为参与许多生命活动的第二信使,其在调控细胞凋亡中的作用尤其受到关注。大量实验发现,化疗中细胞凋亡主要由细胞内Ca2+ 介导;化疗药物在诱导对癌细胞的杀伤时均与癌细胞中的Ca2+ 浓度的增加密切相关。
  但目前的化疗方法还存在重要不足。化疗药物缺乏特异的敏感选择性,在杀死癌细胞的同时,也同样会杀伤正常细胞,并由此产生较为严重的副作用,如骨髓抑制、肾毒性导致肾衰、肌体免疫功能抑制、肝功能损伤、胃肠道反应、脱发、口腔溃疡等。另外,毒副反应还会使化疗药物的剂量和疗程受到限制,导致化疗失败。
  另外,癌细胞对化学治疗药物产生多药耐药性是癌症治疗不能取得治愈性疗效的重要原因之一。多药耐药性是指癌细胞在接触一种抗癌药物后产生了耐受包括本药物在内的多种结构迥然不同、作用机理也大相径庭的抗癌药物的抗药性。国内外学者在器官、细胞和分子水平上对如何克服癌细胞耐药性的问题,进行了大量研究,发现了一些具有逆转癌细胞多药耐药性的药物,称为化疗增敏剂,其中引人瞩目的是Ca2+通道阻滞剂。Ca2+ 通道阻滞剂的作用机制是能选择性地阻断Ca2+经细胞膜上的Ca2+通道进入细胞内,从而降低细胞内的Ca2+浓度。但Ca2+ 通道阻滞剂作为一种具有心血管药理作用的药物,除了可能引起患者的传导阻滞、低血压、充血性心力衰竭等心血管系统的严重毒性反映外,还可能对患者的免疫系统和造血系统产生不利影响。
  
  二、研究思路
  
  从前面的介绍中可以看出,癌症的发生和发展取决于细胞的增殖与凋亡是否平衡,而细胞的凋亡受胞内第二信使Ca2+的调控。化疗是目前治疗癌症的主要方法之一,胞内Ca2+ 浓度增加是不同化疗药物诱导癌细胞凋亡的共同通路。但化疗还存在重要缺陷:化疗药物在诱导癌细胞凋亡的同时,也会对正常细胞产生同样的杀伤;化疗中癌细胞会产生多药抗药性,从而导致化疗失效,适合临床使用的化疗增敏方法目前尚未找到。
  细胞中的Ca2+ 在癌症的发生、细胞的凋亡、化疗对癌细胞的杀伤等几个方面都起着重要作用;而在特定参数的电磁波干预下,正常细胞和癌细胞中Ca2+ 浓度可以产生不同的变化。所有这些都为下列问题的提出打下了基础:能否使用特定参数的电磁波与化疗药物协同作用,其中电磁波参数的选择使癌细胞可产生窗效应,而正常细胞不会有窗效应时,使电磁波与化疗药物分别诱导胞内Ca2+ 浓度升高叠加,并共同介导癌细胞凋亡,正常细胞则不会出现这样的叠加,从而相对降低化疗药物对正常细胞的毒副作用?Ca2+ 通道阻滞剂通过对细胞中Ca2+ 浓度的影响,来逆转癌细胞的多药耐药性,但它会引起许多副作用而不能实用于临床。注意到电磁波的非热生物窗效应也可影响细胞中Ca2+ 的浓度,那么电磁波能否用于逆转化疗药物的多药耐药性?需要哪些条件?
  
  三、研究基础
  
  1.实验结果发现癌细胞内Ca2+ 出现窗效应对电磁波参数的要求相对正常细胞有其特点,即既有相同的一面,又有不同的情况。结合这些特点设法增强化疗药物对癌细胞敏感性杀伤能力的研究已经起步。初步的离体细胞层次的实验表明,一定参数的电磁波可以提高化疗药物对癌细胞的选择性杀伤能力,对正常细胞的杀伤相对可以减轻;
  
  2.初步建立和改进了不同癌细胞株及其正常对照细胞株、多药耐药性癌细胞株在电磁场干预下化疗药物诱导凋亡的体外细胞研究模型。其中利用改进的多药抗药性离体细胞实验模型相比传统模型具有抗药性程度高,性能更稳定的优势。
  以上理论分析和研究表明,无论从科学研究还是临床医学的要求来说,都需要开展对电磁波非热生物效应的进一步研究,探讨电磁波对正常组织细胞和不同种类癌细胞的作用规律和作用机理,并将其应用于改进癌症的治疗,以造福患者和社会。
  
  四、研究方法
  
  1.宽频专用横电磁波传播小室即TEM小室 (Transverse Electromagnetic Cell,横电磁波传输小室) 的研制,可产生不同参数、不同类型的电磁波,且这些参数均可以实时准确测量;
  
  2.建立和改进不同癌细胞及其正常对照细胞、多药耐药性癌细胞在电磁场干预下化疗药物诱导凋亡的体外研究模型;
  
  3.对不同类型癌细胞和正常对照组细胞进行电磁波作用下的非热效应发生条件研究。改变电磁波的类型和参数,反复进行实验,记录各组实验的照片和数据;分析提取可使癌细胞和正常对照组细胞发生非热生物窗效应对电磁波参数的不同要求;
  
  4.从细胞和分子层次的生物学实验研究、生物系统建模和细胞病理生理等角度对实验结果进行分析解释,探讨癌细胞电磁波非热生物效应的发生机理;
  
  5.在可使癌细胞发生窗效应,而正常细胞不发生生物窗效应的电磁波协同化疗药物作用下,应用验证细胞凋亡的几种不同方法检查细胞凋亡情况,分别研究化疗药物诱导癌细胞和正常细胞凋亡的情况,分析提出电磁波对化疗增敏方法与效果;
  
  6.在上述工作的基础上,逐步研究可供动物实验和临床应用的电磁波协同癌症化疗增敏技术。
  
  五、初步成果
  
  本课题研究小组对电磁波干预不同生物组织的非热生物学效应进行研究,完成二十多例次实验,取得了一些规律性的有价值的结果。
  
  1.不同强度的电磁波对癌细胞增生有明显抑制作用。
  选择不同强度的电磁波(5mT、8mT、11mT)对人舌鳞癌细胞进行连续3天的辐照刺激,每天1h,通过MTT法和流式细胞术检测细胞的增生、凋亡和细胞周期的变化.对照组采用相同的实验条件和作用时间但不加磁场辐照。结果 MTT法检测实验组与对照组辐照后24h、48h、72h的OD值,通过SPSS软件分析显示实验组比对照组的OD值显著降低(P

推荐访问:电磁波 化疗 肿瘤 效应

本文来源:http://www.zhangdahai.com/mianfeilunwen/xingzhengguanlilunwen/2019/0402/50282.html

  • 相关内容
  • 热门专题
  • 网站地图- 手机版
  • Copyright @ www.zhangdahai.com 大海范文网 All Rights Reserved 黔ICP备2021006551号
  • 免责声明:大海范文网部分信息来自互联网,并不带表本站观点!若侵害了您的利益,请联系我们,我们将在48小时内删除!